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Abstract
Recently it was conjectured that nodal domains of random wavefunctions are
adequately described by critical percolation theory. In this paper we strengthen
this conjecture in two respects. First, we show that, though wavefunction
correlations decay slowly, a careful use of Harris’ criterion confirms that these
correlations are unessential and nodal domains of random wavefunctions belong
to the same universality class as non-correlated critical percolation. Second,
we argue that level domains of random wavefunctions are described by the
non-critical percolation model.

PACS numbers: 05.045.a, 05.40.a, 03.65.w

1. Introduction

In 1977 Berry [1] conjectured that wavefunctions of generic chaotic systems, �(�x), can
statistically be written as random superposition of a complete set of functions, ψm(�x),

�(�x) =
∑
m

Cmψm(�x), (1)

where the coefficients Cm are independent identically distributed random variables with zero
mean and variance obtained from normalization. In particular, any wavefunction of a two-
dimensional billiard obeys the Helmholtz equation with energy E = k2

(� + E)�(x, y) = 0 (2)

and can be represented as a formal sum

�(x, y) =
∑
m

CmJ|m|(kr) eimφ, (3)

where r and φ are polar coordinates and Jm(r) are the usual Bessel functions. For problems
without magnetic field wavefunctions are real and Cm = C∗

−m.

1 Deceased.
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Figure 1. Left: nodal domains of the eigenfunction of a quarter of the stadium with energy
E = 10092.029. Right: nodal domains of a random wavefunction (3) with k = 100.

Consider a chaotic quantum system like the stadium billiard with Dirichlet boundary
conditions and let us calculate (numerically) a large number of eigenfunctions with energies
close to k2. Each eigenfunction gives a well-defined set of coefficients, Cm in expansion (3)
and it is of interest to know mean values of different functions of these coefficients over the
whole ensemble of eigenfunctions. Berry’s conjecture means that in the semiclassical limit
k → ∞ the result will be the same as if the coefficients Cm would be independent Gaussian
random variables with

〈Cm〉 = 0 and 〈CmC∗
n〉 = σ 2δmn. (4)

Though Berry’s conjecture is one of the oldest conjectures in quantum chaos, it has not yet
been proved rigorously. Numerically, it works very well. In figure 1, we present two pictures,
the left one is a true eigenfunction of a quarter of the stadium with area equals 4π and the
right is a random realization of (3) with approximately the same energy. In these figures black
and white regions represent nodal domains where the function is, respectively, positive and
negative. The two figures look very similar, and the left figure was magnified in order to
distinguish better the circular arc of the stadium billiard where the true wavefunction is zero.

In 2002 Blum, Gnutzmann and Smilansky attracted wide attention to such type of pictures
by initiating the investigation of nodal domains of wavefunctions for different systems [2].
In [3], it was argued that nodal domains of chaotic wavefunctions (like in figure 1) can
adequately be described by a critical percolation model. This conjecture gives a very detailed
description of nodal domains and a large number of interesting (global) quantities can directly
be transposed from percolation results (see e.g. [5]).

In particular, it was shown in [3]2 that the total number of connected nodal domains
for random wavefunctions has Gaussian distribution with a mean value, n̄(E), and variance,
σ̄ 2(E), given by the following expressions:

lim
E→∞

n̄(E)

N̄(E)
= 3

√
3 − 5

π
≈ 0.0624 (5)

and

lim
E→∞

σ̄ 2(E)

N̄(E)
= 18

π2
+

4
√

3

π
− 25

2π
≈ 0.0502. (6)

Here N̄(E) is the mean number of eigenvalues with energy less than E. For billiards,
N̄(E) ≈ Ak2/4π , where A is the billiard area.

2 Recently we became aware that similar formulae for the two-dimensional percolation have been obtained by a
different method in [4].
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Figure 2. Number of nodal clusters for stadium eigenfunctions versus energy. Solid line is the
asymptotic prediction (5).

Figure 3. Left: the stadium eigenfunction with E = 10098.531. Right: the same but with
E = 10107.147.

In [3], it was demonstrated that these relations are well fulfilled by random wavefunctions.
For completeness, we plot in figure 2 the energy dependence of number of nodal domains
computed numerically for true eigenfunctions of a quarter of the stadium close to the 10000th
level. This figure confirms that expression (5) agrees well with the results of numerical
calculations for chaotic wavefunctions. Still the numerical data present deviations from the
expected value (5) larger than it follows from (6). The origin of such large fluctuations is
related to the existence of wavefunction scars. For illustration we present in figure 3 pictures
of nodal domains corresponding to the two lowest points in figure 2. It is clearly seen that these
pictures have two different parts. One shows a regular pattern typical for integrable systems
and the other is practically indistinguishable from a random wavefunction as in figure 1. It is
evident that quasi-regular regions are related to the bouncing ball scar. The left eigenfunction
corresponds to the single excitation of the bouncing ball and the right one demonstrates the
double perpendicular excitation. Regions of quasi-integrable behavior have considerably less
number of nodal domains than chaotic regions which explains the wide distribution of points
in figure 2.

In [3], it was also checked that the distribution of nodal domain areas agrees with the
percolation theory prediction

n(s) ∼ s−τ with τ = 187/91 (7)
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and the fractal dimension of nodal clusters is close to the percolation value

D = 91/48. (8)

These and other numerical calculations confirm that nodal domains of random wavefunctions
(and of chaotic quantum systems) are correctly described by critical percolation theory.

However, this conjecture has an intrinsic difficulty [6]. The standard percolation theory
deals with the following situation. One has a lattice with each site (or edge) positive with
probability p or negative with probability 1 − p. The important assumption here is that these
probabilities (or concentrations) at different points are independent random variables. For
random and chaotic wavefunctions this is not the case. From (3) it follows that

〈�(x, y)〉 = 0, (9)

and the values of the wavefunction at two points are correlated

〈�(�x1)�(�x2)〉 = σ 2g(|�x1 − �x2|), (10)

where

g(|�x1 − �x2|) =
∞∑

m=−∞
Jm(kr1)Jm(kr2) eim(φ1−φ2) = J0(k|�x1 − �x2|). (11)

In mathematical literature one often defines a Gaussian random function without explicit
representation as in (1) but by postulating its mean value and variance (cf (9) and (10)), all
other correlation functions being determined by the Wick theorem.

It is well known [7] that for a Gaussian random function the probability that its value at
two points has the same sign is

P(|�x1 − �x2|) = 1

2
+

1

π
arcsin G(|�x1 − �x2|), (12)

where G(|�x1 − �x2|) is the two-point correlation function divided by its value at 0 so that
G(0) = 1. Therefore, if a random Gaussian function is positive at a point, at all close-
by points it will be also positive with probability close to 1. Only at large distances when
G(r) → 0 probabilities of being positive and negative become equal as in the usual percolation.
For random wavefunctions G(r) coincides with g(r) in (11) and because

J0(kr)
r→∞−→

√
2

πkr
cos(kr − π/4), (13)

the random wavefunction correlation function decays quite slowly (∼r−1/2) which may destroy
the validity of percolation theory.

One of the purposes of this paper is to show that this is not the case. In section 2 we use
so-called Harris’ criterion [8] to demonstrate that the oscillating character of the correlation
function (11) leads to strong cancelations and even the slow decay as in (13) is sufficient in
order that nodal domains of random wavefunctions be in the same universality class as non-
correlated percolation. Though Harris’ criterion is not mathematically rigorous, it is widely
accepted (see e.g. [9]) and its fulfillment is a strong argument in favor of the validity of the
conjecture that nodal domains of random wavefunctions in the semiclassical limit k → ∞ are
described by critical percolation. In section 3, we generalize this conjecture to level domains,
i.e. regions where �(x, y) is bigger (or smaller) than a non-zero value ε. We argue that such
domains are also described by percolation theory but this time by the non-critical percolation
and the deviation from criticality is proportional to ε.
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2. Harris’ criterion

Harris proposed his criterion in 1974 [8] to investigate the influence of random defects on the
critical behavior of the Ising model. Later it was applied to many other models. In particular,
in [9] it was used for correlated percolation and we follow closely this paper.

Let us consider a critical percolation problem where concentrations in different sites,
denoted by �(�x), are correlated. The criticality condition means that the mean concentration
in each site equals a critical value p∗,

〈�(�x)〉 = p∗. (14)

Below we assume that the connected part of the two-point correlation function of
concentrations depends only on the difference between these points

〈(�(�x1) − p∗)(�(�x2) − p∗)〉 = g(|�x1 − �x2|). (15)

Harris’ criterion was developed to give a condition on the function g(r) under which
correlations are unessential, and critical properties of the problem under consideration are
the same as for non-correlated percolation. Harris’ argumentation is as follows [8, 9]. Let pV

be the average concentration in a finite volume V ,

pV = 1

V

∑
�x∈V

�(�x). (16)

The mean value of pV over realizations equals the critical value

〈pV 〉 = p∗, (17)

but for a given realization it differs from it.
Consider the situation when inside the volume V all sites have the same concentration

pV . As pV �= p∗, it corresponds to a non-critical percolation. From the percolation theory it
is known that points are uncorrelated if they are separated by a distance larger than a certain
correlation length (the cluster size) ξ :

ξ ∼ |pV − p∗|−ν, (18)

where ν is a certain critical index. For the standard two-dimensional percolation ν = 4/3
[5]. When pV is close to p∗ this correlation length is large but finite. Divide the whole space
into cells of radius of order of ξ in (18). Different cells can be considered as uncorrelated
but inside each cell concentrations are correlated. The natural measure of the importance
of correlations is the variance, �, of pV which can be computed from the knowledge of the
two-point correlation function (15)

� ≡ 〈(pV − p∗)2〉 = 1

V 2

∑
�x1,�x2∈V

〈(�(�x1) − p∗)(�(�x2) − p∗)〉

≈ 1

V 2

∫
�x1∈V

∫
�x2∈V

g(|�x1 − �x2|) d�x1 d�x2. (19)

Harris’ criterion [8, 9] states that if the variance is small with respect to |pV − p∗|2,

�  |pV − p∗|2, (20)

correlations are unessential and all critical quantities are the same as for the standard
uncorrelated percolation.

As the integrant in (19) depends only on the distance between two points one usually
simplifies this integral without discussion (cf [9]) by assuming that one point is somewhere
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inside V and the second point is on a distance r of the order of the initial cell size so that the
double integral in (19) can be rewritten as a simple one

� ≈ 1

V

∫
�x∈V

g(|�x|) d�x. (21)

When the d-dimensional cell V is of the radius ξ , equation (21) leads to the following widely
used expression:

� ≈ 1

ξd

∫ ξ

0
g(r)rd−1 dr. (22)

If the correlation function decreases as a certain power of the distance

g(r)
r→∞−→ r−α, (23)

one gets ∫ ξ

r−α+d−1 dr =
{

const when α > d

ξd−α when α < d.
(24)

Therefore

� ≈
{
ξ−d ∼ |pV − p∗|dν when α > d

ξ−α ∼ |pV − p∗|αν when α < d.
(25)

The comparison with (20) leads to the standard Harris criterion [9] that correlations are
unessential provided min(α, d)ν > 2.

For random wavefunctions g(r) decays as in (13) and because for the two-dimensional
percolation ν = 4/3 Harris’ criterion seems to indicate that random waves cannot be described
by a usual percolation model. But the above considerations are valid only when the correlation
function g(r) is positive. When it has oscillations, formulae (21) and (22) cannot be correct
as by definition � is non-negative, but these expressions may change the sign.

The main point is that the double integral in (19) cannot, in general, be approximated by
the simple integral (21).

For random wavefunctions, the correlation function is given by (11)

g(|�x1 − �x2|) ∼ J0(k|�x1 − �x2|) =
∞∑

m=0

J|m|(kr1)J|m|(kr2) eim(φ1−φ2). (26)

Assuming for simplicity that region V is a circle, all integrals over polar angles vanish except
the one with m = 0 and∫

�x1∈V

∫
�x2∈V

g(|�x1 − �x2|) d�x1 d�x2 =
(

2π

∫ ξ

0
J0(kr)r dr

)2

. (27)

Therefore in this case

� ∼
(

1

ξ 2

∫ ξ

0
J0(kr)r dr

)2

∼
(

J1(kξ)

ξ

)2

∼ ξ−3. (28)

Finally, as ν = 4/3 one concludes that

� ∼ |pV − p∗|4  |pV − p∗|2 (29)

which means that Harris’ criterion is fulfilled and heuristically there is no contradiction
between the applicability of the percolation model to nodal domains of random (and chaotic)
wavefunctions and slow decay of wavefunction correlations.
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Figure 4. Left: nodal domains of a random wavefunction. Right: level domains of the same
function with ε = 0.03. In the both figures the largest connected clusters are highlighted.

3. Level domains and non-critical percolation

The success of percolation-like description of nodal domains of random wavefunctions
naturally leads to different generalizations. In particular, it was mentioned in [3] that level
domains of random functions can also be described by percolation theory. But contrary to the
above case one has to consider not critical but non-critical percolation theory.

Level domains are regions where a function is bigger than a certain value

�(x, y) > ε (30)

with ε �= 0. To understand better how level domains look like we present in figure 4 two
pictures. The left one displays nodal domains for one realization of a random wavefunction
(3). Boundaries between black and white nodal regions correspond to nodal lines where
�(x, y) = 0. The right figure represents level domains of the same wavefunction. White
(resp. black) regions are domains where �(x, y) is bigger (resp. lower) than 0.03 (in a
certain normalization). Boundaries between these regions (called level lines) are solutions
of equation �(x, y) = 0.03. Both figures look quite similar. To stress their difference the
largest connected clusters in both figures are highlighted. In the left figure this cluster connects
different boundaries but does not cover the whole region. In contrast, in the right figure the
cluster fills practically all allowed space. This behavior is quite reminiscent of percolation
transition. At critical concentration there exist an infinite cluster and a large number of finite
clusters (cf (7) and (8)). When the concentration is bigger than the critical, one infinite cluster
with the dimension equal to the space dimension appears.

To quantify different relations between level domains and non-critical percolation we use
one-parameter scaling which is assumed to be valid for non-critical percolation not too far
from criticality. According to the scaling conjecture all quantities for non-critical percolation
with concentration p are the same as for critical percolation with concentration p∗ multiplied
by a function depending only on one universal combination of parameters.

For example, the number of cluster of size s in critical case is given by (7). For non-critical
percolation it takes the following form:

ns(p) = K1s
τ f (K2(p − p∗)sσ ), (31)
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where f (z) is a certain function depending on the universal argument

z = (p − p∗)sσ . (32)

Here τ and σ are universal critical indices. For two-dimensional percolation they are known
analytically (see e.g. [5])

τ = 187
91 , σ = 36

91 . (33)

In (31) only the constants K1,K2 and the threshold value p∗ depend on micro details of the
problem such as the type of percolation (side or edge percolation) and the form of the lattice
(triangular, square, etc). The indices τ , σ and the function f (z) are assumed to be universal
(but depend on dimensionality of the problem).

Scaling and universality are very important properties of non-critical percolation theory.
We will now check that they are also well fulfilled for level domains of random wavefunctions.
First we need a relation between the deviation from criticality, p−p∗, and ε in (30). To simplify
the formulae below, it is convenient to normalize billiard wavefunctions by the condition∫

A

|�(x, y)|2 dx dy = A, (34)

where A is the billiard area.
With this normalization random wavefunctions (3) are Gaussian random functions with

σ = 1 (cf (11)). Therefore, the probability density that �(x, y) = t is

P(t) = 1√
2π

e−t2/2 (35)

and the probability P>(ε) that �(x, y) > ε takes the form

P>(ε) =
∫ ∞

ε

P (t) dt ≈ 1

2
− ε√

2π
+ O(ε3). (36)

Consequently, for small ε,

p − pc ∼ ε (37)

and for level domains the scaling relations as in (31) are valid with the substitution
p − p∗ −→ ε.

Consider first the total number of connected level domains. For this quantity there exists
no explicit scale as in (31) and the scaling prediction is particular simple. For the non-critical
percolation

n̄(p)

n̄(p∗)
= f (p − p∗), (38)

so for level domains it should be
n̄(ε)

n̄(0)
= f (Kε) (39)

with a certain constant K and the same function f (z) . Here n̄(p) is the mean number of
connected clusters for a percolation model with concentration p. n̄(ε) is the same quantity but
for level domains (30). n̄(0) is the mean number of nodal domains given by (5).

In figure 5, there are two curves. The solid line is the ratio (39) computed numerically for
random Gaussian functions. Data are well fitted by a quadratic fit 1 + 0.6135ε + 13.47ε2. The
dashed line represents the ratio (38) computed numerically for bond percolation on 110 × 110
square lattice. Black circles result from the rescaling p − p∗ = ε/1.62. It is clearly seen that
points for level domains after rescaling agree very well with data from pure percolation which
confirms the scaling (38) and (39).
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Figure 5. Ratio of the number of clusters to its critical value for level domains of random
wavefunctions (solid line) and for non-critical bond percolation on a square lattice. For the first
curve the abscissa axis is ε, for the second one it represents p − p∗. Black circles are results of
rescaling p − p∗ = ε/1.62.

0 5
ln(s)

0

5

10

15

ln
(n

s)

ε =0
ε
ε=.1
ε
ε=.05

Figure 6. Number of domains of area s for random wavefunctions. Different curves represent
results for different values of ε. Straight line has the slope −187/91 predicted for nodal domains.

In figures 6 and 7, we present the verification of (31) for level domains of random
wavefunctions. In figure 6, the number of clusters with area s is plotted for a few different
values of ε and k = 200. Curves are clearly different and slopes for ε �= 0 differ from the
critical percolation value (7) predicted for nodal domains. Then we rescale these data using
as the abscissa axis the variable z = εsσ as follows from the one-parameter scaling. The
resulting points are concentrated close to each other and on the left of figure 7 the solid line
indicates the average of all such calculations which supports the existence of scaling for level
domains. In the same figure two more curves are presented. The dashed line represents the
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Figure 7. Left: scaling relations. Solid line—random wavefunctions with k = 200. Dashed
line—bond percolation on a square 110 × 110 lattice. Dotted line—the same but on a 50 × 50
lattice. Right: rescaling of dotted curve by p − p∗ = ε/1.33.
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Figure 8. Fractal dimension of level domains. From bottom to top: ε = 0, ε = 0.1, and ε = 0.2.
For all curves k = 200. The slope of the solid line is 91/48, of the dotted line is 2, of the dashed
line it is 1.56. Black circles represent domains where �(x, y) < ε and open ones regions with
�(x, y) > ε.

results of similar calculations but for the non-critical bond percolation on a square 110 × 110
lattice and the dotted line is the same but on a square lattice with 50 × 50 sites. For these
curves the z variable is defined as in (31), namely, z = (p − p∗)sσ . Once more the scaling
relation is well satisfied. Finally, on the right part of figure 8 it is shown that after the rescaling
p−p∗ = ε/1.33, the curve of level domains practically coincides with the one for non-critical
percolation on a square 50× lattice.

Finally, in figure 8 the results of numerical calculations for fractal dimensions of clusters
are presented. According to percolation theory (see e.g. [5]) the dominant cluster has the
dimension 2 but the other ones have the fractal dimension equal approximately to 1.56. Note
that for critical percolation (and the nodal domains) the fractal dimension of clusters is 91/48.
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4. Conclusion

The conjecture that random (and chaotic) wavefunctions in the semiclassical limit can be
described by percolation theory is analyzed. We demonstrate that, though wave correlations
decay slowly, a careful application of Harris’ criterion suggests that nodal domains of
random wavefunctions are indeed in the same universality class as the critical non-correlated
percolation. We also present arguments in favor that the non-critical percolation is useful in
the investigation of non-zero level domains of random wavefunctions. Let us mention that
in [10] it is shown that nodal lines of random wavefunctions are close to SLE6 curves which
describe boundaries of critical percolation clusters. Recently in [11] it has been proved the
existence of the limit (5) (but not its value) for random spherical harmonics. All these results
confirm the above conjecture. It is of interest to find a rigorous proof of it.
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